

工业EC传感器用户手册(485型)

SN-3002-EC -N01-* Ver 2.0

目录

第	1章 产品简介	4
	1.1 产品概述	
	1.2 功能特点	4
	1.3 主要参数	4
	1.4 系统框架图	5
	1.5 产品选型	6
第	2 章 硬件连接	8
	2.1 设备安装前检查	8
	2.2 接口说明	8
	2.2.1 传感器接线	8
	2.3 安装方式	9
	2.3.1 电极类型及尺寸	9
	2.3.2 电极安装	. 10
第	3 章 配置软件安装及使用	11
	3.1 参数配置说明	11
	3.2 电极标定说明	11
第	4 章 通信协议	. 12
	4.1 通讯基本参数	. 12
	4.2 数据帧格式定义	. 12
	4.3 寄存器地址	. 12
	4.4 通讯协议示例以及解释	. 13
第	5 章 注意事项及维修维护	. 15

第 1 章 产品简介

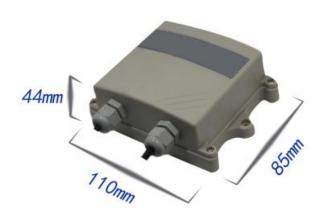
1.1 产品概述

本产品是一款测量溶液电导率值的设备,该设备具有自动温度补偿功能,可将当前温度电导率补偿到指定温度。可广泛应用于断面水质、养殖、污水处理、环保、制药、食品和自来水等水溶液电导率值的连续监测。

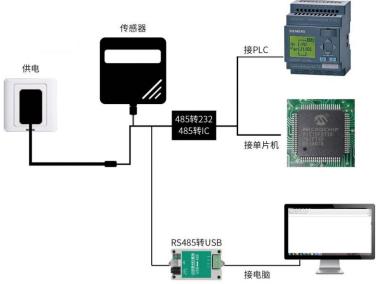
1.2 功能特点

- 电导率测量最大范围 1~20000 μ S/cm; 温度测量范围-20~100 ℃, 分辨率 0.1 ℃。
- 带有盐度与 TDS 换算功能
- RS485 通讯接口: ModBus-RTU 通讯协议可方便联入计算机进行监测和通讯。
- ModBus 通信地址可设置,波特率可修改。
- 设备采用宽电压供电,直流 10~30V 均可。
- 产品外壳为 IP65 防护等级,可用于室外雨雪环境。

1.3 主要参数

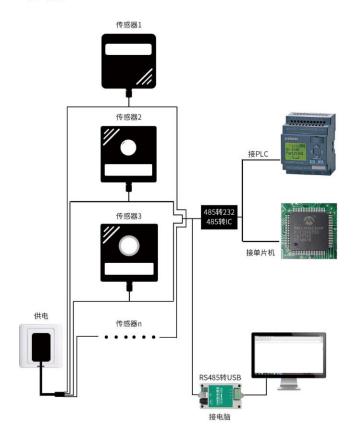

供电	DC 10~30V
功耗	0.4W
通信接口	RS485;标准的 ModBus-RTU 协议;通信波特率:默认
	4800 (1200、2400、4800、9600、19200、38400、57600、
	115200 可设)
电导率测量范围	K=0.01: 0.01~20μS/cm; 分辨率: 0.001μS/cm
	K=0.1: 0.1~200μS/cm; 分辨率: 0.01μS/cm
	K=1: 1~2000μS/cm; 分辨率: 0.1μS/cm
	K=10: 10~20000μS/cm; 分辨率: 1μS/cm
电导率测量误差	±1%FS
温度测量范围	-20~100℃; 分辨率: 0.1℃
温度测量误差	±0.5℃
温度补偿范围	-20~100℃(默认补偿温度 25℃)
温度补偿系数	默认 0.02

盐度测量范围	K=0.01: 0~10ppm
	K=0.1: 0~100ppm
	K=1: 0~1000ppm
	K=10: 0~11476ppm
TDS 测量范围	K=0.01: 0~10ppm
	K=0.1: 0~100ppm
	K=1: 0~1100ppm
	K=10: 0~13400ppm
传感器元件耐温及	-20℃~+80℃,0%RH~95%RH (非结露)
湿度	
电极线长	默认 5m(可定制 10m、15m、20m)


売体尺寸

壁挂王字壳: 110×85×44mm

1.4 系统框架图


单接

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以接 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

SN-				公司代号	
	3002-				壁挂王字壳
		EC-		_	工业 EC 传感器
			N01-		485 (ModBus 协议) 输出
				SUSP01-	不锈钢电极,电极常数
					k=0.01
				SUSP1-	不锈钢电极,电极常数 k=0.1
				SUS01-	不锈钢电极,电极常数 k=1
				SUS10-	不锈钢电极,电极常数 k=10
				EP01-	塑壳电极,电极常数 k=1
				EP10-	塑壳电极,电极常数 k=10

				空	不带显示	
				OLED	OLED 显示	

第 2 章 硬件连接

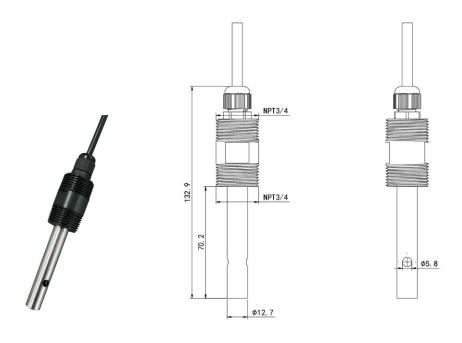
2.1 设备安装前检查

设备清单:

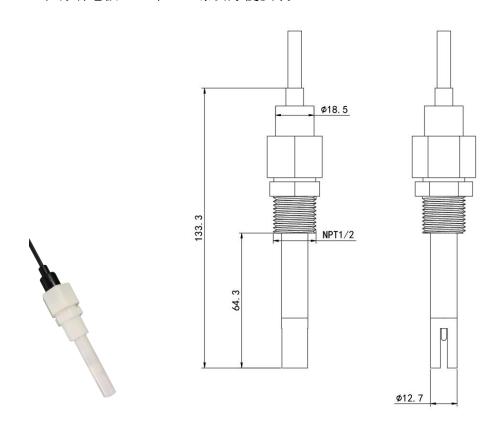
- ◆工业 EC 传感器 1 台
- ◆电导率电极1个
- ◆合格证
- ◆膨胀塞2个、自攻丝2个

2.2 接口说明

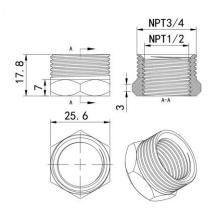
电源接口为宽电压电源输 10-30V 均可。485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。


2.2.1 传感器接线

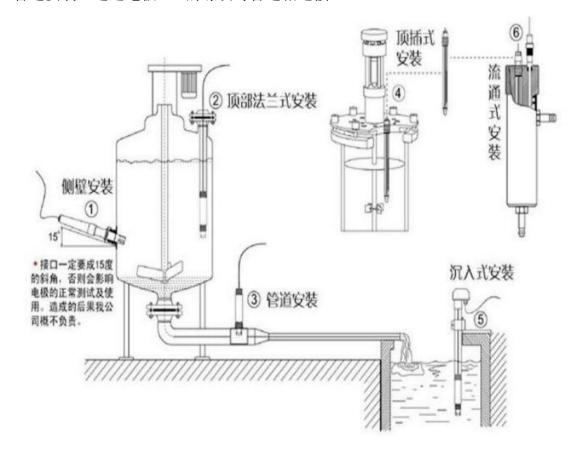
	说明	说明
电	棕色	电源正(7~30V DC)
源	黑色	电源负
通	黄 (绿)色	485-A
讯	蓝色	485-B



2.3 安装方式


2.3.1 电极类型及尺寸

不锈钢电极,上下3/4螺纹方便安装。

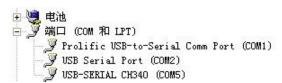


塑壳电极, 我公司提供 3/4 转 1/2 补芯, 以便安装。

2.3.2 电极安装

- 1. 沉入式安装: 电极的引线从不锈钢管里穿出,电极顶部的 3/4 螺纹与不锈钢 3/4 螺纹用生料带相连接。确保电极顶部及电极线不进水。
- 2. 管道安装: 通过电极 3/4 的螺纹与管道相连接。

第 3 章 配置软件安装及使用


我公司提供配套的"485参数配置软件",可方便使用电脑读取传感器的参数,同时灵活修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证485总线上只有一个传感器。

3.1 参数配置说明

打开资料包,选择"调试软件"---"485参数配置软件",找到打开即可。

1)选择正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM 端口),下图列举出几种不同的 485 转换器的驱动名称。

- 2)单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
 - 3)根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
 - 4) 如果测试不成功,请重新检查设备接线及485驱动安装情况。

3.2 电极标定说明

参考 4.3 寄存器地址与 4.4 的示例及解释进行电极标定。

第 4 章 通信协议

4.1 通讯基本参数

编 码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC(冗余循环码)
波特率	出厂默认为 4800bit/s

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4字节的时间

地址码=1字节

功能码=1字节

数据区=N字节

错误校验= 16 位 CRC 码

结束结构≥4字节的时间

地址码: 为传感器的地址, 在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

4.3 寄存器地址

寄存器地址	支持功能码	说明	
0x0000 0x03/0x0		电导率值(16位无符号整数,量程1~2000时为实际值的 10倍;量程10~20000时为实际值)	
0x0001	0x03/0x04	温度(16位有符号整数,实际值的10倍)	
0x0002 0x03/0x04		盐度(16 位无符号整数,ppm)	
0x0003 0x03/0x04		TDS(16 位无符号整数,ppm)	
0x03/0x04/ 0x0050 0x06/0x10		温度偏差值(16位有符号整数,实际值的10倍)	
0x0051	0x03/0x04/	电导率偏差值(16位有符号整数,量程1~2000时为实际	

	0x06/0x10	值的 10 倍; 量程 10~20000 时为实际值)
0.0052.0.0052	0x03/0x04/	
0x0052,0x0053	0x16	电导率温度补偿系数(浮点数大端)
	0x03/0x04/	I IT MAN (ATT IN I AND A
0x0054,0x0055	0x16	电极常数(浮点数大端)
		校准(0110H 寄存器写入 00 04,0111H 寄存器写入校准的
0x0110,0x0111	0x16	标准溶液值,量程 1~2000 时为实际值的 10 倍;
		量程 10~20000 时为实际值)
0.0700	0x03/0x04/	
0x07D0	0x06/0x10	1~254(16 位无符号整数,出厂默认 1)
		0 代表 2400
		1 代表 4800
		2 代表 9600
0.0701	0x03/0x04/	3 代表 19200
0x07D1	0x06/0x10	4 代表 38400
		5 代表 57600
		6 代表 115200
		7 代表 1200

4.4 通讯协议示例以及解释

举例 1: 读地址为 01 的设备当前电导率值和温度下发帧:

地址码	功能码	寄存器地址	寄存器内容	校验码低位	校验码高位
0x01	0x03	0x00 0x00	0x00 0x02	0xc4	0x0b

应答帧: (例如量程为 0~2000 μ S/cm 的设备读到电导率值为 1000 μ S/cm,温度为 26.5 $^{\circ}$ $^{\circ}$)

地址码	功能码	有效字节数	寄存器内容	校验码低位	校验码高位
0x01	0x03	0x04	0x27 0x10 0x01 0x09	0x30	0xd4

电导率计算: 2710 (十六进制) =10000 =>电导率=1000.0 µ S/cm

温度计算: 109H(十六进制)=265=>温度=26.5℃

举例 2: 对地址为 01 的设备当前电导率值设置偏差值进行数值修正

下发帧: (假如当前量程为 $0\sim2000\,\mu$ S/cm 的设备,输出电导率值为 990,要将数值修正到 1000,差值为 1000-990=10,扩大 10 倍为 100=>64H(十六进制),

寄存器内容写 00 64)

地址码	功能码	寄存器地址	寄存器内容	校验码低位	校验码高位
0x01	0x06	0x00 0x50	0x00 0x64	0x88	0x30

应答帧: (根据 ModBus 标准应答为下发帧的镜像报文)

地址码	功能码	寄存器地址	寄存器内容	校验码低位	校验码高位
0x01	0x06	0x00 0x50	0x00 0x64	0x88	0x30

举例 3: 对地址为 01 的量程 1~2000 的设备用 1413 µ s/ms 的标准液校准

下发帧: 向 0110H、0111H 分别写入 00 04, 1413*10 转换 16 进制为 37 32

地址码	功能码	寄存器地址	寄存器长度	字节长度	寄存器内容	校验码低位	校验码高位
0x01	0x10	0x01 0x10	0x00 0x02	0x04	0x00 0x04 0x37 0x32	0x29	0x17

应答帧: (根据 ModBus 标准应答为下发帧的镜像报文)

地址码	功能码	寄存器地址	寄存器长度	校验码低位	校验码高位
0x01	0x10	0x01 0x20	0x00 0x02	0x41	0xfe

第 5 章 注意事项及维修维护

- ◆ 设备本身一般不需要日常维护,在出现明显的故障时,请不要打开自行修理,尽快与我们联系!
- ◆ 电极长期不使用时,一可以贮存在干燥的地方,使用前必须放入(贮存) 在蒸馏水中数小时来活化电极,经常使用的电极可以放入(贮存)在蒸馏水中。
- ◆ 电导电极的清洗:

可用含有洗涤剂的温水清洗电极上有机成分沾污,也可以用酒精清洗。 钙、镁沉淀物,最好用 10 %柠檬酸。

只能用化学方法或在水中晃动的方式清洗电极极片或极柱。擦拭电极极片或极柱会破坏镀在电极表面的镀层(铂黑)。

◆ 每次使用前应校准设备,长期使用建议每3个月校准一次,校准频度应根据不同的应用条件适当调整(应用场合的脏污程度,化学物质的沉积等)。