

模拟量转485模块

Ver 2.0

		t.
		1
Η	-1	`

第1章产品介绍	3
1.1 产品概述	3
1.2 功能特点	3
1.3 主要技术指标	3
1.4 产品选型	3
1.5 模拟量对应关系表	3
第2章 设备安装说明	4
2.1 设备安装前检查	4
2.2 接线说明	4
2.3 输入信号接线举例	5
2.3.1 两线制接线示意图	5
2.3.2 三线制接线示意图	6
第3章 配置软件安装及使用	6
3.1 传感器接入电脑	6
3.2 传感器监控软件的使用	6
第 4 章 通信协议	7
4.1 通讯基本参数	7
4.2 数据帧格式定义	7
4.3 寄存器地址	8
第 5 章 常见问题及解决方法	9

第1章产品介绍

1.1 产品概述

该模块可采集现场的最多两路模拟量信号(4-20mA、0-10V、0-5V)并转为485 接口标准 ModBus-RTU 通信协议上传。485 接口最远通信距离 2000 米,可直接 接入现场的 PLC、工控仪表、组态屏或组态软件。采集精度 10 位(1024)分辨 率、12 位(4096)分辨率可选。可广泛应用于工业现场、配电柜等需要模拟量 信号采集的场所。

1.2 功能特点

采用标准的 ModBus-RTU 协议,地址、波特率可通过上位机软件设置,可挂接在 485 总线中使用。产品按工业标准设计、制造,具有过压保护,过流保护,抗干扰能力强,可靠性高等特点。

1.3 主要技术指标

供电电源: 10~30V DC 功耗: 0.4W 输入通道数: 1 路或 2 路可选 AD 转换分辨率: 10 位或 12 位可选 采集信号: 4~20mA、0~5V、0~10V 可选 存储环境: -40℃~60℃ 输入阻抗: 4~20mA ≤200Ω; 0~5V/0-10V ≥10kΩ

1.4 产品选型

SN-				公司代号
	I20-			采集 4~20mA 电流信号
	V05-			采集 0~5V 电压信号
	V10-			采集 0~10V 电压信号
		485-		485 通讯(ModBus 协议)
			空	普通型
			G	高精度型

1.5 模拟量对应关系表

类型	采集数据(10 位 AD)	采集数据(12 位 AD)
4~20 mA	163~819	655~3276
0~5 V	0~1024	0~4096
0~10 V	0~1024	0~4096

第2章 设备安装说明

2.1 设备安装前检查

设备清单

■ 模拟量转 485 模块 1 台

■ 产品合格证、保修卡等

■ USB 转 485(选配)

安装尺寸:

2.2 接线说明

产品外观图:

	标识	说明 备注	
	VCC	电源输入正	10~30V DC
电源输入及通信	GND	电源输入地	
	485A	485-A	通信
	485B	485-B	
	VCC	电源输出正	电源输出,模块给设备
电源输出及信号输入	GND	电源输出地	
	IN0	模拟量1输入	两线制、三线制、四线制通
	IN1	模拟量2输入	用

转换模块只需要一端供电就可以正常工作,另一端电源是为后级供电而准 备,如不对后级进行供电,可悬空。

2.3 输入信号接线举例

线制	VCC	GND	IN0	IN1
两线		मेर	描 刊 旦 於) 1	掛 割 旱 松))
制		工	── 快扒里制八Ⅰ	快扒里制八2
三线	设备电源	造 友 中 酒 山	掛₩. 見 た入入 1	拱州县 校) 2
制	正	以	快扒重制八 I	快扒里制八 2
四线	设备电源地			掛割具於うって
制		模拟量输入负		候拟里制八2止

2.3.1 两线制接线示意图

二线制设备接线图

2.3.2 三线制接线示意图

三线制设备接线图

第3章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中 看到正确的 COM 口("我的电脑— 属性—设备管理器—端口"里面查看 COM 端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到485副章软件打 开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 传感器监控软件的使用

 ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的 串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波 特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

485变送器配置软件V2.1		×
请选择串口号: COM9 🗾	测试波特率]
设备地址: 1		- 设置
设备波特率: 4800		设置
温度值:	查询	
湿度值:	查询	
水浸状态:	查询	
断电状态:	查询	
光照度测试结果		千数设定
со		
運信輸出延田 设备地址:1 波	特率:4800	设置
運信常开常闭设置		设置
湿度上的	确定	设置
湿度下印		设置
温度上限:		设置
温度下限:		设置
湿度回差:		设置
温度回差:		设置
湿度偏差:		设置
温度偏差:		设置
液晶控制模式:	液晶控制模式设	置
无线温湿度变送器参数设置:	无线参数设置	

第4章通信协议

4.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC (冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下: 初始结构 ≥4 字节的时间 地址码 =1 字节 功能码 =1 字节 数据区 =N 字节 错误校验 =16 位 CRC 码 结束结构 ≥4 字节的时间 地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示,本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第N数据区	校验码
1字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地址	PLC或组态地址	内容	操作
0000 H或0040 H	40001或40065	第一路模拟量数值	只读
0001 H或0041 H	40002或40066	第二路模拟量数值	只读

4.4 通讯协议示例以及解释

4.4.1 读取设备地址 0x01 的 2 路模拟量数值

问询帧

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x40	0x00 0x02	0xC5	0xDF

或问询帧

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x00	0x00 0x02	0xC4	0x0b

应答帧(例如读到第一路为300,第二路为500)

地址码	功能码	返回有效字节数	模拟量1	模拟量2	校验码低位	校验码高位
0x01	0x03	0x04	0x01 0x2C	0x01 0xF4	0x3A	0x11

第5章常见问题及解决方法

无输出或输出错误

可能的原因:

①、电脑有 COM 口,选择的口不正确。

②、波特率错误。

③、485总线有断开,或者 A、B线接反。

④、设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻。

⑤、USB转485驱动未安装或者损坏。

⑥、设备损坏。